Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2,4,5,7,9,10-Hexathia-1,3,6,8(1,4)-tetrabenzenacyclodecaphane

Zhifo Guo and Rufen Zhang*

College of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China Correspondence e-mail: macl@lcu.edu.cn

Received 21 October 2007; accepted 23 October 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.004 Å; R factor = 0.034; wR factor = 0.089; data-to-parameter ratio = 14.0.

In the title macrocyclic molecule, $C_{24}H_{16}S_6$, the S–S bond lengths are 2.0600 (11) and 2.0589 (12) Å. The crystal packing exhibits no classical intermolecular interactions.

Related literature

For S-S bond lengths, see: Ogawa et al. (1999).

Experimental

Crystal data

 $\begin{array}{l} C_{24}H_{16}S_6 \\ M_r = 496.73 \\ \text{Orthorhombic, } Pna2_1 \\ a = 14.6300 \ (15) \text{ Å} \\ b = 25.025 \ (3) \text{ Å} \\ c = 5.9754 \ (6) \text{ Å} \end{array}$

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{min} = 0.818, T_{max} = 0.951$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.089$ S = 1.003815 reflections 272 parameters 1 restraint $V = 2187.7 \text{ (4) } \text{\AA}^{3}$ Z = 4 Mo K\alpha radiation \(\mu = 0.64 \text{ mm}^{-1}\) T = 298 (2) K 0.33 \times 0.11 \times 0.08 \text{ mm}\)

11286 measured reflections 3815 independent reflections 3452 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.029$

H-atom parameters constrained $\Delta \rho_{max} = 0.25 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{min} = -0.21 \text{ e} \text{ Å}^{-3}$ Absolute structure: Flack (1983), 1683 Friedel pairs Flack parameter: 0.02 (8)

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXTL*.

The authors acknowledge the financial support of the National Natural Science Foundation of China (grant No. 20271025).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2323).

References

- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Ogawa, S., Sugawara, M., Kawai, Y., Niizuma, S., Kimura, T. & Sato, R. (1999). *Tetrahedron Lett.* **40**, 9101–9106.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Siemens (1996). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

supplementary materials

Acta Cryst. (2007). E63, o4465 [doi:10.1107/81600536807052567]

2,4,5,7,9,10-Hexathia-1,3,6,8(1,4)-tetrabenzenacyclodecaphane

Z. Guo and R. Zhang

Comment

In the title compound (Fig. 1), the S—S bond lengths are 2.0600 (11) Å [S2—S5] and 2.0589 (12) Å [S3—S6], which are consistent with the reported values (Ogawa *et al.*, 1999). The intramolecular distances C2···C20 and C8···C18 are 4.418 (5) and 7.281 (7) Å, respectively.

Experimental

To an ethanol (10 ml) solution of 4,4'-thiodibenzenethiol (1 mmol) was added an ethanol (5 ml) solution of iodine (2 mmol). The mixture was stirred for 4 h at room temperature, and a pale yellow solution was obtained and filtered. The filtrate was left undisturbed at room temperature for two weeks. Crystals of the title compound suitable for X-ray analysis were grown from an ethanol solution (yield 63%).

Refinement

All H atoms were placed in geometrically idealized positions (C—H = 0.93 Å) and treated as riding on their parent atoms, with $U_{iso}(H)=1.2U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and atomic numbering. H atoms have been omited for clarity.

2,4,5,7,9,10-Hexathia-1,3,6,8(1,4)-tetrabenzenacyclodecaphane

Crystal data	
$C_{24}H_{16}S_6$ $M_r = 496.73$	
Orthorhombic, Pna21	
Hall symbol: P 2c -2n a = 14.6300 (15) Å	
b = 25.025 (3) Å c = 5.9754 (6) Å	

 $F_{000} = 1024$ $D_x = 1.508 \text{ Mg m}^{-3}$ Mo Ka radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5516 reflections $\theta = 2.8-28.2^{\circ}$ $\mu = 0.64 \text{ mm}^{-1}$ T = 298 (2) K

$V = 2187.7 (4) \text{ Å}^3$	Block, colourless
Z = 4	$0.33 \times 0.11 \times 0.08 \text{ mm}$

Data collection

Bruker SMART CCD area-detector diffractometer	3815 independent reflections
Radiation source: fine-focus sealed tube	3452 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.029$
T = 298(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
φ and ω scans	$\theta_{\min} = 1.6^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -17 \rightarrow 12$
$T_{\min} = 0.818, \ T_{\max} = 0.951$	$k = -29 \rightarrow 29$
11286 measured reflections	$l = -7 \rightarrow 6$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.034$	$w = 1/[\sigma^2(F_o^2) + (0.051P)^2 + 0.7742P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.089$	$(\Delta/\sigma)_{\rm max} = 0.001$
<i>S</i> = 1.00	$\Delta \rho_{max} = 0.25 \text{ e } \text{\AA}^{-3}$
3815 reflections	$\Delta \rho_{min} = -0.21 \text{ e} \text{ Å}^{-3}$
272 parameters	Extinction correction: none
1 restraint	Absolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.02 (8)

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
S1	0.04551 (7)	0.61284 (3)	-0.25432 (16)	0.0556 (3)

S2	0.19406 (5)	0.42222 (3)	0.33953 (16)	0.04216 (19)
S3	0.10998 (5)	0.81877 (3)	0.33467 (17)	0.0505 (2)
S4	0.42460 (7)	0.63478 (3)	0.83251 (19)	0.0586 (2)
S5	0.33401 (5)	0.42247 (3)	0.30183 (15)	0.0479 (2)
S6	0.24892 (6)	0.82644 (3)	0.29017 (17)	0.0495 (2)
C1	0.09121 (19)	0.56196 (11)	-0.0797 (5)	0.0373 (7)
C2	0.1331 (2)	0.57092 (12)	0.1244 (6)	0.0428 (8)
H2	0.1401	0.6057	0.1765	0.051*
C3	0.1646 (2)	0.52860 (11)	0.2518 (6)	0.0393 (7)
Н3	0.1903	0.5349	0.3916	0.047*
C4	0.15771 (19)	0.47662 (11)	0.1706 (5)	0.0355 (7)
C5	0.1188 (2)	0.46789 (11)	-0.0373 (5)	0.0373 (7)
Н5	0.1156	0.4333	-0.0940	0.045*
C6	0.08465 (19)	0.50999 (11)	-0.1612 (6)	0.0400 (6)
Н6	0.0573	0.5036	-0.2992	0.048*
C7	0.0574 (2)	0.67187 (12)	-0.0927 (5)	0.0400 (7)
C8	0.0130 (2)	0.67842 (12)	0.1109 (6)	0.0441 (8)
H8	-0.0272	0.6523	0.1620	0.053*
С9	0.0283 (2)	0.72354 (12)	0.2371 (6)	0.0415 (7)
Н9	0.0011	0.7270	0.3771	0.050*
C10	0.0843 (2)	0.76392 (12)	0.1554 (5)	0.0385 (7)
C11	0.1210 (2)	0.75951 (13)	-0.0562 (5)	0.0425 (7)
H11	0.1532	0.7880	-0.1178	0.051*
C12	0.11021 (19)	0.71307 (11)	-0.1764 (6)	0.0418 (7)
H12	0.1386	0.7094	-0.3148	0.050*
C13	0.4031 (2)	0.57457 (12)	0.6845 (6)	0.0404 (7)
C14	0.4422 (2)	0.56461 (12)	0.4793 (6)	0.0431 (8)
H14	0.4823	0.5893	0.4168	0.052*
C15	0.42192 (19)	0.51778 (11)	0.3656 (6)	0.0394 (7)
H15	0.4460	0.5119	0.2237	0.047*
C16	0.3658 (2)	0.47972 (11)	0.4632 (5)	0.0378 (7)
C17	0.3322 (2)	0.48796 (13)	0.6754 (6)	0.0451 (8)
H17	0.2985	0.4613	0.7457	0.054*
C18	0.3483 (2)	0.53591 (12)	0.7850 (6)	0.0436 (7)
H18	0.3226	0.5422	0.9249	0.052*
C19	0.3718 (2)	0.68490 (12)	0.6690 (6)	0.0392 (7)
C20	0.3303 (2)	0.67732 (12)	0.4636 (6)	0.0462 (8)
H20	0.3279	0.6433	0.4016	0.055*
C21	0.2923 (2)	0.72005 (11)	0.3493 (6)	0.0446 (7)
H21	0.2652	0.7145	0.2104	0.053*
C22	0.2943 (2)	0.77105 (11)	0.4405 (5)	0.0378 (7)
C23	0.3359 (2)	0.77856 (12)	0.6463 (6)	0.0414 (7)
H23	0.3380	0.8126	0.7088	0.050*
C24	0.37435 (19)	0.73607 (11)	0.7594 (6)	0.0410 (7)
H24	0.4022	0.7417	0.8973	0.049*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0788 (6)	0.0384 (4)	0.0496 (5)	0.0030 (4)	-0.0241 (5)	0.0010 (4)
S2	0.0472 (4)	0.0278 (3)	0.0515 (5)	-0.0022 (3)	-0.0025 (4)	0.0039 (4)
S3	0.0544 (4)	0.0424 (4)	0.0547 (5)	0.0143 (3)	-0.0033 (5)	-0.0102 (4)
S4	0.0803 (6)	0.0408 (4)	0.0545 (5)	0.0112 (4)	-0.0296 (5)	-0.0075 (5)
S5	0.0467 (4)	0.0367 (4)	0.0603 (6)	0.0083 (3)	-0.0029 (4)	-0.0104 (4)
S6	0.0575 (5)	0.0309 (4)	0.0602 (6)	-0.0033 (3)	-0.0076 (4)	0.0049 (4)
C1	0.0365 (15)	0.0324 (15)	0.0430 (19)	0.0011 (12)	-0.0013 (13)	0.0013 (13)
C2	0.0506 (19)	0.0294 (15)	0.048 (2)	0.0001 (13)	-0.0111 (16)	-0.0056 (14)
C3	0.0466 (16)	0.0314 (15)	0.0399 (18)	0.0009 (12)	-0.0067 (15)	-0.0029 (13)
C4	0.0340 (15)	0.0303 (15)	0.0423 (18)	0.0009 (12)	0.0043 (14)	0.0008 (13)
C5	0.0396 (16)	0.0292 (15)	0.0431 (18)	-0.0018 (12)	0.0027 (14)	-0.0050 (13)
C6	0.0436 (15)	0.0404 (15)	0.0361 (16)	-0.0034 (12)	-0.0025 (15)	-0.0047 (16)
C7	0.0420 (16)	0.0339 (15)	0.0442 (19)	0.0049 (12)	-0.0109 (14)	0.0035 (13)
C8	0.0432 (18)	0.0398 (18)	0.049 (2)	-0.0031 (14)	0.0014 (15)	0.0115 (15)
С9	0.0381 (15)	0.0490 (18)	0.0374 (17)	0.0071 (13)	0.0047 (14)	0.0066 (15)
C10	0.0391 (16)	0.0332 (15)	0.0431 (19)	0.0098 (13)	-0.0050 (14)	0.0022 (14)
C11	0.0466 (18)	0.0396 (17)	0.0414 (18)	-0.0044 (13)	0.0014 (15)	0.0039 (14)
C12	0.0454 (15)	0.0447 (16)	0.0353 (17)	0.0023 (12)	0.0015 (16)	0.0020 (15)
C13	0.0436 (17)	0.0351 (16)	0.0425 (18)	0.0078 (13)	-0.0116 (14)	-0.0011 (14)
C14	0.0453 (17)	0.0351 (16)	0.049 (2)	0.0006 (13)	0.0002 (15)	0.0065 (15)
C15	0.0399 (15)	0.0384 (15)	0.0398 (18)	0.0071 (12)	0.0025 (14)	0.0014 (15)
C16	0.0365 (16)	0.0359 (16)	0.0411 (18)	0.0043 (12)	-0.0040 (14)	0.0018 (14)
C17	0.0402 (18)	0.049 (2)	0.046 (2)	-0.0048 (14)	0.0010 (15)	0.0024 (16)
C18	0.0414 (15)	0.0526 (18)	0.0368 (18)	0.0068 (13)	-0.0003 (14)	-0.0012 (16)
C19	0.0378 (16)	0.0340 (15)	0.0458 (19)	0.0053 (13)	-0.0046 (14)	-0.0050 (14)
C20	0.058 (2)	0.0341 (16)	0.046 (2)	0.0079 (14)	-0.0123 (16)	-0.0108 (15)
C21	0.0536 (17)	0.0387 (15)	0.0413 (17)	0.0072 (13)	-0.0118 (17)	-0.0070 (16)
C22	0.0383 (16)	0.0288 (14)	0.0464 (18)	0.0001 (12)	0.0010 (14)	-0.0018 (13)
C23	0.0432 (17)	0.0324 (16)	0.049 (2)	-0.0024 (13)	0.0013 (15)	-0.0109 (14)
C24	0.0420 (16)	0.0383 (16)	0.0428 (18)	-0.0012 (12)	-0.0057 (15)	-0.0081 (14)

Geometric parameters (Å, °)

S1—C7	1.773 (3)	С9—Н9	0.9300
S1—C1	1.777 (3)	C10-C11	1.379 (5)
S2—C4	1.776 (3)	C11—C12	1.376 (4)
S2—S5	2.0600 (11)	C11—H11	0.9300
S3—C10	1.781 (3)	C12—H12	0.9300
S3—S6	2.0589 (12)	C13—C14	1.376 (5)
S4—C19	1.768 (3)	C13—C18	1.393 (4)
S4—C13	1.775 (3)	C14—C15	1.387 (4)
S5—C16	1.789 (3)	C14—H14	0.9300
S6—C22	1.780 (3)	C15—C16	1.386 (4)
C1—C2	1.383 (4)	C15—H15	0.9300
C1—C6	1.392 (4)	C16—C17	1.376 (5)

C2—C3	1.383 (4)	C17—C18	1.387 (4)
С2—Н2	0.9300	C17—H17	0.9300
C3—C4	1.392 (4)	C18—H18	0.9300
С3—Н3	0.9300	C19—C20	1.382 (4)
C4—C5	1.384 (4)	C19—C24	1.390 (4)
C5—C6	1.381 (4)	C20—C21	1.386 (4)
С5—Н5	0.9300	C20—H20	0.9300
С6—Н6	0.9300	C21—C22	1.388 (4)
C7—C12	1.383 (4)	C21—H21	0.9300
С7—С8	1.389 (5)	C22—C23	1.385 (5)
C8—C9	1.376 (5)	C23—C24	1.380 (4)
С8—Н8	0.9300	С23—Н23	0.9300
C9—C10	1.390 (4)	C24—H24	0.9300
C7—S1—C1	103.91 (14)	C11—C12—C7	120.4 (3)
C4—S2—S5	103.48 (10)	C11—C12—H12	119.8
C10—S3—S6	101.69 (11)	С7—С12—Н12	119.8
C19—S4—C13	104.44 (15)	C14—C13—C18	119.9 (3)
C16—S5—S2	101.66 (10)	C14—C13—S4	121.6 (3)
C22—S6—S3	103.33 (11)	C18—C13—S4	118.5 (3)
C2—C1—C6	119.4 (3)	C13—C14—C15	120.0 (3)
C2—C1—S1	124.6 (2)	C13—C14—H14	120.0
C6—C1—S1	116.0 (2)	C15-C14-H14	120.0
C3—C2—C1	120.6 (3)	C16-C15-C14	120.1 (3)
С3—С2—Н2	119.7	С16—С15—Н15	119.9
С1—С2—Н2	119.7	C14—C15—H15	119.9
C2—C3—C4	120.0 (3)	C17—C16—C15	119.8 (3)
С2—С3—Н3	120.0	C17—C16—S5	121.6 (2)
С4—С3—Н3	120.0	C15-C16-S5	118.5 (3)
C5—C4—C3	119.3 (3)	C16—C17—C18	120.3 (3)
C5—C4—S2	120.8 (2)	С16—С17—Н17	119.9
C3—C4—S2	119.8 (2)	С18—С17—Н17	119.9
C6—C5—C4	120.6 (3)	C17—C18—C13	119.7 (3)
С6—С5—Н5	119.7	C17-C18-H18	120.2
С4—С5—Н5	119.7	C13—C18—H18	120.2
C5—C6—C1	120.0 (3)	C20—C19—C24	118.9 (3)
С5—С6—Н6	120.0	C20-C19-S4	125.8 (2)
С1—С6—Н6	120.0	C24—C19—S4	115.3 (2)
C12—C7—C8	119.4 (3)	C19—C20—C21	120.5 (3)
C12—C7—S1	118.6 (3)	C19—C20—H20	119.7
C8—C7—S1	122.0 (2)	C21—C20—H20	119.7
C9—C8—C7	120.0 (3)	C20—C21—C22	120.5 (3)
С9—С8—Н8	120.0	C20—C21—H21	119.8
С7—С8—Н8	120.0	C22—C21—H21	119.8
C8—C9—C10	120.0 (3)	C23—C22—C21	118.9 (3)
С8—С9—Н9	120.0	C23—C22—S6	120.4 (2)
С10—С9—Н9	120.0	C21—C22—S6	120.6 (2)
C11—C10—C9	119.6 (3)	C24—C23—C22	120.6 (3)
C11—C10—S3	122.1 (2)	С24—С23—Н23	119.7
C9—C10—S3	118.3 (2)	С22—С23—Н23	119.7

supplementary materials

C12—C11—C10	120.1 (3)	C23—C24—C19	120.6 (3)
C12—C11—H11	119.9	C23—C24—H24	119.7
C10—C11—H11	119.9	C19—C24—H24	119.7
C4—S2—S5—C16	73.11 (15)	S1-C7-C12-C11	180.0 (2)
C10—S3—S6—C22	-73.89 (15)	C19—S4—C13—C14	67.7 (3)
C7—S1—C1—C2	-5.4 (3)	C19—S4—C13—C18	-115.1 (3)
C7—S1—C1—C6	175.8 (2)	C18—C13—C14—C15	4.6 (5)
C6—C1—C2—C3	-2.9 (5)	S4-C13-C14-C15	-178.2 (2)
S1—C1—C2—C3	178.3 (3)	C13-C14-C15-C16	-3.2 (4)
C1—C2—C3—C4	2.7 (5)	C14-C15-C16-C17	-1.6 (4)
C2—C3—C4—C5	-0.3 (4)	C14—C15—C16—S5	175.0 (2)
C2—C3—C4—S2	-177.5 (2)	S2—S5—C16—C17	47.7 (3)
S5—S2—C4—C5	103.3 (2)	S2—S5—C16—C15	-128.9 (2)
S5—S2—C4—C3	-79.6 (2)	C15—C16—C17—C18	5.0 (5)
C3—C4—C5—C6	-1.8 (4)	S5-C16-C17-C18	-171.5 (2)
S2—C4—C5—C6	175.3 (2)	C16-C17-C18-C13	-3.7 (5)
C4—C5—C6—C1	1.6 (4)	C14—C13—C18—C17	-1.2 (5)
C2—C1—C6—C5	0.8 (4)	S4-C13-C18-C17	-178.4 (2)
S1—C1—C6—C5	179.7 (2)	C13—S4—C19—C20	-4.6 (3)
C1—S1—C7—C12	119.6 (2)	C13—S4—C19—C24	176.0 (2)
C1—S1—C7—C8	-62.4 (3)	C24—C19—C20—C21	0.3 (5)
C12—C7—C8—C9	-5.9 (5)	S4-C19-C20-C21	-179.0 (3)
S1—C7—C8—C9	176.2 (2)	C19—C20—C21—C22	-0.8 (5)
C7—C8—C9—C10	3.5 (5)	C20-C21-C22-C23	0.8 (5)
C8—C9—C10—C11	2.8 (4)	C20-C21-C22-S6	177.9 (3)
C8—C9—C10—S3	-174.6 (2)	S3—S6—C22—C23	-104.9 (2)
S6—S3—C10—C11	-43.3 (3)	S3—S6—C22—C21	78.0 (3)
S6—S3—C10—C9	134.0 (2)	C21—C22—C23—C24	-0.4 (5)
C9—C10—C11—C12	-6.7 (5)	S6—C22—C23—C24	-177.5 (2)
S3-C10-C11-C12	170.6 (2)	C22—C23—C24—C19	-0.1 (5)
C10-C11-C12-C7	4.3 (5)	C20-C19-C24-C23	0.1 (5)
C8—C7—C12—C11	2.0 (5)	S4—C19—C24—C23	179.5 (2)

Fig. 1